车牌识别系统的关键技术及算法。
车牌字符识别算法的研究。
基于特征统计匹配算法
基于特征统计匹配算法主要原理是先提取输入模式的车牌字符统计特征,再按照一定的规则与所确定的决策函数进行分类判断。字符的统计特征包括像素块数、字符的轮廓数、轮廓的形状等。像素块是指二值化图像中上、下、左、右四个方向上相互连通的所有白素区域所组成的一个连通区域的像素块,由此可知,江苏车牌识别,汉字字符的像素块大于1,英文字母和数字的像素块数是1。
车牌识别系统的关键技术及算法。 车牌字符分割算法的研究 车牌字符分割就是对已经定位出的车牌区域内的车牌字符进行分割,从而获取车牌上的字符,是车牌字符识别的前提和准备。车牌字符分割的好坏,直接影响到识别效果的好坏。在车牌识别系统中,由于车牌污染、背景复杂、光照不均匀、车牌发生倾斜、边框影响以及间隔符等因素影响,车牌识别品牌,很难找到一种普遍使用的分割方法。 在车牌的字符分割中,有许多因素会对车牌的字符分割造成影响,小区车牌识别系统,例如图像的噪声、车牌的定位不精1确、字符的粘连、汉字的不连通等。本文介绍一种改进的水平投影算法,该算法能够克服这些因素造成的不良影响,并且能够准确的分割出车牌,为后续的精1确识别做好准备。为了分割出相互独立的字符,对经过Otsu算法阈值化的灰度图进行分割。
车牌识别系统的关键技术及算法。
边缘检测:
边缘检测的方法是考察图像的像素在某个领域内灰度的变化情况,标识数字图像中亮度变化明显的点。图像的边缘检测能够大幅度地减少数据量,车牌识别价格,并且剔除不相关的信息,保存图像重要的结构属性。在实际的图像分割中,往往只用到一阶和二阶导数进行边缘检测,虽然,在原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶导数操作中就会出现对噪声敏感的现象,三阶以上的导数信息往往失去了应用价值。此外,二阶导数还可以说明灰度突变的类型,在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。为了减少二阶导数对噪声敏感,解决的办法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。